新北市109年度國中小科技輔助自主學習實施計畫

「教育雲」創新教案設計

服務學校		新北市五股區五股國小		設計者		董正傑				
領域/科目		自然領域、資訊科技		實施年級		六年級'				
單元名稱		看得見的聲音—探討音波管內的 波形變化		總節數		共4節・160分鐘				
行動載具 i		iOS	DS 系統、 Windows 系統							
作業系	統									
 設計依據										
學習重點	學現學容	內	 能自製音波管,藉由自己杂的實驗架構進行可靠度與數據互相比較。 能與組員互相合作解決問題培養團隊合作的精神。 能運用分貝器量測聲音大小 能運用資訊科技調整單頻調高低。 自製音波管架構與管內振重粒的選擇。 音波管實驗音源的選擇,對中保麗龍球跳動的影響。 探討音量大小的改變,對音管中波峰高低的影響。 探討音高頻率的改變,對音管內波長的影響並且與理數值比較。 		核心素養	A2 系統思考與解決問題 C2 人際關係與團隊合作 B1 符號運用與溝通表達 B2 科技資訊與媒體素養僅列舉 出高度相關之領網核心素養 精神與意涵。				
	實質	內	1. 資訊教育議題							
議題	涵		2. 科技教育議題	科技教育議題						
融入	所融	入		了解物體經由振動發聲,聲音有音量、音高、音色等變化。並藉由分貝						
	之學	習	器的量測,了解環境音量控	器的量測,了解環境音量控管的重要性。						
	重點									
與其他領域/科		科	1. 音樂、電腦、數學	音樂、電腦、數學						
目的連結										

藉由第五十屆台北市科學展覽:看得見的聲音一探討音波管內的波形變化 教材來源 (董正傑老師,崔暎玗老師)來發想設計 一、第五十屆台北市科學展覽:看得見的聲音一探討音波管內的波形變化(董 教學設備/資源 正傑老師,崔暎玕老師) 二、休伊特(民 97)。觀念物理學Ⅳ聲學光學。臺北市:天下文化。 三、楊庭堯等(民 102)。綠色寶笛。中華民國第五十三屆中小學科展國小組生 活與應用科學科。 四、維 基 聲 波 字 百 科 https://zh.wikipedia.org/wiki/%E5%A3%B0%E6%B3%A2 五、許良榮(民 103)。玩出創意 3:77 個奇趣科學玩具。臺北市:書泉。 六、黄俊豪等(民 99)。探究肯特管內波漣的成因。中華民國第五十三屆中小 學科展高中組物理科。 使用軟體、數 Ipad, 音頻產生器軟體 位資源或 APP 內容 學習目標 參考資料分析 產生波形的因素 影響波形變化 整理實驗數據

音量大小、

音頻高低。

,歸納與討論。

第一節課

1-1介紹聲音的音量、音高、音色等變化。

第二節課

2-2=觀察音波管內的波形對於不同聲音的變化。

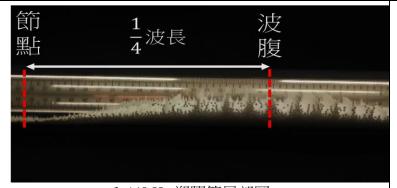
振動顆粒選擇、

音源選擇、

顆粒多寡。

第三節課

3-1自製簡易音波管


選音波管材料

製作音波管。

第四節課

4-1實際操作看見聲音

教學活動設計									
教學活動內容及實施方式	時間	使用軟體、APP 內容							
第一、二節教學活動	80分鐘	Ipad							
一、課前準備 (一)教師準備 分貝計、量筒、小顆的保麗容球、塑膠管、小音 叉、 (二)學生準備: 紗布剪刀 膠帶 橡皮筋		藍芽喇叭'音頻播放 app							
二、引起動機 (一) 聲音到底長甚麼樣子?是長的?圓的?方的?不不不,通通都不是,那到底是什麼? (二) 給學生看一段因波管內保麗容求因為聲音震動									
三、發展活動 1.活動一:認識聲音感覺聲音 介紹孩子認識生組成的三大要素,頻率、聲音大小、音色。並了解聲音的產生是因為物體震動所產生的。藉由讓學生敲擊音叉後,再用手去觸摸,會發現聲音會因為手去觸摸就聽不見,老師引導聲音是因為物質震動的關係,才能讓我們生活周遭能聽到聲音。									
2.活動二:認識聲音並看見聲音 老師藉由肯特管聲音模組,讓學生用眼睛看到聲音, 並藉由藍芽喇叭連線平板電腦,學生可以用頻率調整 器 App 與聲音調整的方式,自行觀察不同聲音所產生 出來的波形!									
藍牙喇叭播放的塑膠音波管									
波峰振幅高度量測照片									

f=440 Hz 塑膠管局部圖

四、概念整理

- 1. 驗證當音量越大時音波管內振動越明顯,波形的振幅會越高。
- 2. 驗證頻率越高,波長越短。

第三、四節教學活動

一、課前準備

(一) 教師準備

分貝計、量筒、小顆的保麗容球、塑膠管、小音叉、

(二) 學生準備:

紗布 剪刀 膠帶 橡皮筋

二、引起動機

- 1.給學生看一段因波管內保麗容求因為聲音震動,
- 2.今天我們要自製簡易音波管!用生活中唾手可得的器材,就可以製作出令人驚奇的物理現象!

三、發展活動

1.活動一:

藉由讓學生用吸管與紗布,還有事前準備的保麗容球製作吸管版的音波管,老師引導聲音是因為物質震動的關係,才能讓我們生活周遭能聽到聲音。

2.活動二:

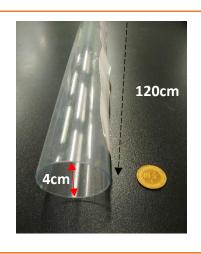
老師藉由學生分組演示吸管版-音波管,比比看哪一組 所演示的聲音波形最明顯,並請學生想想看如何將自 己設計的作品作改進。最後再進行一次分組觀摩,選 出最棒的組別。 80分鐘

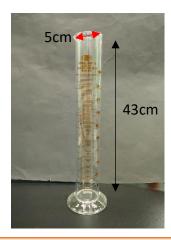
lpad 藍芽喇叭' 音頻播放 app

人聲版音波管

人聲的量筒版音波管

四、概念整理


發現用比較小的保麗龍球成功機率比較高,但用大的保麗龍球比較小,所以後來我們都用小的來進行測驗 與拍照,我們還發現用玻璃製的管子容易成功,但塑 膠管不易成功,所以用老師的量筒來進行測驗,現在 終於知道聲音長怎樣了。


------課程結束------

音波管的材質(塑膠管、玻璃管)

塑膠管 (管直徑 4cm,長 120cm)

玻璃管 (管直徑 5cm,長 43cm)

音波管內的振動材料與顆粒篩網(大、小保麗龍球、貓砂)

小保麗龍球(0.1cm)

大保麗龍球(0.3cm)

貓砂 (礦物砂 0.1cm)

篩網(長寬 0.1cm)

音波管的音源器材、音頻軟體、其他相關器材

平板電腦

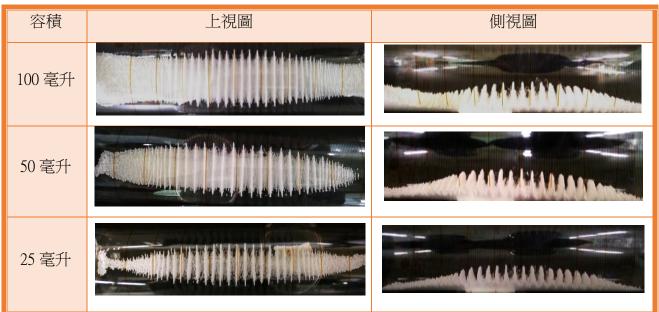
藍芽喇叭

嗩吶

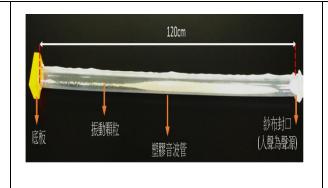
分貝計

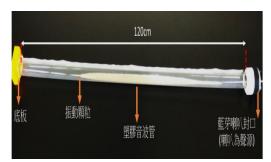
調音器

音頻軟體 Audacity



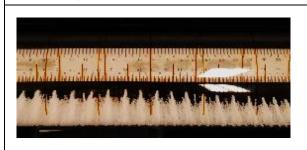
其他相關器材

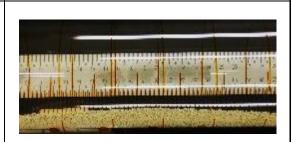

自製音波管材料與軟體



從上面的表格中可以看到,「上視圖」100毫升的保麗龍球太多,前後波形的紋路不太明顯,50毫升和25毫升看起來波形明顯。

比較「側視圖」50毫升的波形可以觀察到振動特別高的波峰,25毫升因顆粒較少波峰不明顯,所以我們選擇在玻璃量筒內裝入「50毫升的保麗龍球」完成後面的實驗。


比較玻璃管裝入不同容積的保麗龍球



教學成果

說明: 人聲用塑膠音波管

說明: 喇叭用塑膠音波管

說明: 音波管裝0.1cm 保麗龍球測試

說明: 音波管裝貓砂測試

教學心得 與省思

驗。探討產生波形的因素包含:不同振動顆粒、聲音來源的選擇、顆粒在管子中的多寡,在多次的實驗後,我們發現能成功產生波形的條件是:1.管子裝入輕巧的0.1cm 小保麗龍球;2.使用喇叭當作聲音來源;3.填裝適量容積的保麗龍球可形成明顯的波形。再來研究音波管內影響波形變化,我們發現:1.音量越大時顆粒振動明顯,實際測量波峰高度比較後確實符合分貝越大振幅越高;2.轉換不同音高頻率時,利用公式算出理論值的波長與我們測量音波管內的波長做比較,發現在440Hz的狀況下兩種音波管與理論值的誤差最小。

我們透過聲音讓顆粒在透明管中產生振動來觀察聲波的現象,這就是「音波管」實

參考資料

- 一、第五十屆台北市科學展覽:看得見的聲音一探討音波管內的波形變化(董正傑老師,崔暎玗老師)
- 二、休伊特(民 97)。觀念物理學Ⅳ聲學光學。臺北市:天下文化。
- 三、楊庭堯等(民 102)。綠色寶笛。中華民國第五十三屆中小學科展國小組生活與應 用科學科。
- 四、維基百科。聲波。檢字:https://zh.wikipedia.org/wiki/%E5%A3%B0%E6%B3%A2
- 五、許良榮(民 103)。玩出創意 3:77 個奇趣科學玩具。臺北市:書泉。
- 六、黃俊豪等(民 99)。探究肯特管內波漣的成因。中華民國第五十三屆中小學科展 高中組物理科。

附錄